
Demo

December 31, 2020

This is a demonstration of the features of IJuliaTimeMachine. It also explains some of the design
choices.

1 What IJulia Provides
IJulia already provides some historical information. In records the inputs to cells, and Out records
their outputs. IJulia.n is the number of the current cell.

[1]: 1+1

[1]: 2

[2]: In[1]

[2]: "1+1"

[3]: Out[1]

[3]: 2

2 Setting up IJuliaTimeMachine
I recommend assigning IJuliaTimeMachine a shorter name, like TM as below.

[4]: import IJuliaTimeMachine
TM = IJuliaTimeMachine

[4]: IJuliaTimeMachine

If you use it a lot, and don’t want to keep typing the TM prefix, you can instead type using
IJuliaTimeMachine. This will import @past and vars.

3 Recalling past states

[5]: x = 1+1

[5]: 2

1

[6]: x = randn(3)

[6]: 3-element Array{Float64,1}:
-0.07656817141946694
-1.7219397904552953
-1.6390299328866278

Say that I just accidentally change the value of the variable x, and I’d like to know what it’s value
was after cell 5. I can recover the state of variables from then with @past.

[7]: TM.@past 5
x

[7]: 2

The value of ans was also recalled.

[8]: ans

[8]: 2

The Time Machine stores a deepcopy of every variable. While this is inefficient, it allows us to
recover a vector, even if some other cell changes one of its entries.

[9]: vec = collect(1:4)

[9]: 4-element Array{Int64,1}:
1
2
3
4

[10]: vec[3] = 100
vec

[10]: 4-element Array{Int64,1}:
1
2

100
4

[11]: TM.@past 9
vec

[11]: 4-element Array{Int64,1}:
1
2
3

2

4

By default @past also recalls the output of the past cell, and so that output appears in the display.

[12]: TM.@past 9

[12]: 4-element Array{Int64,1}:
1
2
3
4

This can be very useful because IJulia’s Out stores a pointer to an array, rather than the array.
This means that the value recalled can be changed, like this.

[13]: y = [1;2;3]

[13]: 3-element Array{Int64,1}:
1
2
3

[14]: Out[13]

[14]: 3-element Array{Int64,1}:
1
2
3

[15]: y[3] = 0
Out[13]

[15]: 3-element Array{Int64,1}:
1
2
0

Note that the last element changed to a 0. This does not happen with the values stored by the
Time Machine.

[16]: TM.@past 13

[16]: 3-element Array{Int64,1}:
1
2
3

The Time Machine only stores variables it can effectively copy. Right now, it can not copy functions.

3

[17]: # note that cell is equal to the number of this cell, 17.
cell = IJulia.n
f(x) = x
f(1)

[17]: 1

[18]: y = 2
f(x) = 2x
f(1)

[18]: 2

[19]: TM.@past cell

[19]: 1

[20]: f(1)

[20]: 2

But, if the only thing that changes in a function is a global variable, then you can essentially recover
the function.

[21]: f(x) = y*x

[21]: f (generic function with 1 method)

[22]: cell = IJulia.n
y = 3
f(1)

[22]: 3

[23]: y = 4
f(1)

[23]: 4

[24]: TM.@past cell

[24]: 3

[25]: f(1)

[25]: 3

You can stop the Time Machine from saving.

4

[26]: TM.saving!(false)

[26]: save_state (generic function with 1 method)

[27]: z = "hello!"

[27]: "hello!"

[28]: TM.@past 27

State 27 was not saved.

Stacktrace:
[1] error(::String) at ./error.jl:33
[2] top-level scope at /Users/spielman/Dropbox/dev/IJuliaTimeMachine/src/
↪→the_past.jl:98
[3] include_string(::Function, ::Module, ::String, ::String) at ./loading.jl:
↪→1091

And, you can make it start saving again.

[29]: TM.saving!(true)

[29]: 1-element Array{Function,1}:
save_state (generic function with 1 method)

[30]: z = "hi :)"

[30]: "hi :)"

[31]: z = "overwrite that"

[31]: "overwrite that"

[32]: TM.@past 30
z

[32]: "hi :)"

If we really want to forget the past, or just save memory, we can clear some history. Just give a
list of the cells to be cleared. If no list is specified, it clears all of them. This is the safest option,
because to free up the memory used by a variable, one must clear every cell in which that variable
exists.

[33]: z = []
TM.clear_past([30])

5

[34]: TM.@past 30

State 30 was not saved.

Stacktrace:
[1] error(::String) at ./error.jl:33
[2] top-level scope at /Users/spielman/Dropbox/dev/IJuliaTimeMachine/src/
↪→the_past.jl:98
[3] include_string(::Function, ::Module, ::String, ::String) at ./loading.jl:
↪→1091

But, this didn’t get rid of the string “hi :)”, because that string was also saved in cell 32. You can
see that by using the vars function, which returns a dictionary of all the variables saved with a
cell. To get rid of that string, we would need to clear cells 30 and 32.

[35]: TM.vars(32)

[35]: Dict{Any,Any} with 5 entries:
:vec => [1, 2, 3, 4]
:y => 3
:cell => 22
:z => "hi :)"
:x => 2

The big table of all the stored variables is TM.VX.store

[36]: TM.VX.store

[36]: Dict{Any,Any} with 14 entries:
0xf02d7561089106d2 => [1, 2, 3, 4]
0xc70ed234e0a3ad59 => 17
0xf15becc4be4c0cd4 => [-0.0765682, -1.72194, -1.63903]
0xf4e13e0713120297 => "hi :)"
0x3688cf5d48899fa6 => 3
0x5c97e8eedebac7cc => [1, 2, 100, 4]
0x5a94851fb48a6e05 => 2
0x40322bb383bc0a9c => [1, 2, 3]
0x867b4bb4c42e5661 => 4
0xf9dae1a92b5e5ba7 => Any[]
0x6fd433390b9283dd => 22
0xb98a8ec9a0959679 => "hello!"
0x700bc5643854405f => "overwrite that"
0x6680a11d7499012b => [1, 2, 0]

[37]: z = []
TM.clear_past(30:36)

6

[38]: TM.VX.store

[38]: Dict{Any,Any} with 12 entries:
0xf02d7561089106d2 => [1, 2, 3, 4]
0xc70ed234e0a3ad59 => 17
0xf15becc4be4c0cd4 => [-0.0765682, -1.72194, -1.63903]
0x3688cf5d48899fa6 => 3
0x5c97e8eedebac7cc => [1, 2, 100, 4]
0x5a94851fb48a6e05 => 2
0x40322bb383bc0a9c => [1, 2, 3]
0x867b4bb4c42e5661 => 4
0xf9dae1a92b5e5ba7 => Any[]
0x6fd433390b9283dd => 22
0xb98a8ec9a0959679 => "hello!"
0x6680a11d7499012b => [1, 2, 0]

If you want to see the cell output that TM stored,look at TM.ans(cell).

[39]: TM.ans(23)

[39]: 4

Variables are stored by hash so that each piece of data is only stored once. This reduces wasted
memory. Unfortunately, we can not use Julia’s default hash function to do this, as small changes
to data do not necessarily change this hash. Here are two examples of this problem.

[40]: a = randn(1000,1000)
h0 = hash(a)
a[1,1] = 0
h1 = hash(a)
h0 == h1

[40]: true

[41]: mutable struct S
a

end
x = S(1)
h0 = hash(x)
x.a = 0
h1 = hash(x)
h0 == h1

[41]: true

TM uses its own hash function to avoid this problem.

7

[42]: a = randn(1000,1000)
h0 = TM.tm_hash(a)
a[1,1] = 0
h1 = TM.tm_hash(a)
h0 == h1

[42]: false

[43]: mutable struct S
a

end
x = S(1)
h0 = TM.tm_hash(x)
x.a = 0
h1 = TM.tm_hash(x)
h0 == h1

[43]: false

Unfortunately, tm_hash is can be slow because it must examine every element of a data structure.
But, you probably don’t want to store a big chunk of data in the TM anyway.

If you have some big piece of data that you do not want stored, you can tell the Time Machine not
to do that. The function dontsave tells the TM not to store the variable it is given. But, if you
copy the variable, the copy will be saved. Similarly, it will be saved if you bind the variable to a
new piece of data.

[44]: BIG = randn(1000,1000)
TM.dontsave(BIG)

[45]: TM.vars(IJulia.n - 1)

[45]: Dict{Any,Any} with 9 entries:
:a => [0.0 0.580431 … 0.0275737 -0.607591; 1.60128 0.293623 … 0.177615 -0.…
:vec => [1, 2, 3, 4]
:h1 => 0x4330888b40615b85
:y => 3
:h0 => 0xc0fb5ae483d856da
:cell => 22
:S => S
:z => Any[]
:x => S(0)

[46]: Y = BIG
Y === BIG

[46]: true

8

[47]: # Y is not saved because it has the same binding as BIG
TM.vars(IJulia.n - 1)

[47]: Dict{Any,Any} with 9 entries:
:a => [0.0 0.580431 … 0.0275737 -0.607591; 1.60128 0.293623 … 0.177615 -0.…
:vec => [1, 2, 3, 4]
:h1 => 0x4330888b40615b85
:y => 3
:h0 => 0xc0fb5ae483d856da
:cell => 22
:S => S
:z => Any[]
:x => S(0)

[48]: # now, Y has a different binding
Y = copy(BIG)
Y === BIG, Y == BIG

[48]: (false, true)

[49]: TM.vars(IJulia.n - 1)

[49]: Dict{Any,Any} with 10 entries:
:a => [0.0 0.580431 … 0.0275737 -0.607591; 1.60128 0.293623 … 0.177615 -0.…
:vec => [1, 2, 3, 4]
:h1 => 0x4330888b40615b85
:y => 3
:h0 => 0xc0fb5ae483d856da
:cell => 22
:S => S
:Y => [-1.23786 0.744897 … -1.28247 0.0257696; 0.585993 -1.45679 … -0.5606…
:z => Any[]
:x => S(0)

[50]: # This does not change the binding of BIG
BIG[1,1] = 0

[50]: 0

[51]: TM.vars(IJulia.n - 1)

[51]: Dict{Any,Any} with 10 entries:
:a => [0.0 0.580431 … 0.0275737 -0.607591; 1.60128 0.293623 … 0.177615 -0.…
:vec => [1, 2, 3, 4]
:h1 => 0x4330888b40615b85
:y => 3
:h0 => 0xc0fb5ae483d856da

9

:cell => 22
:S => S
:Y => [-1.23786 0.744897 … -1.28247 0.0257696; 0.585993 -1.45679 … -0.5606…
:z => Any[]
:x => S(0)

On this laptop, it takes about half a second to hash an 800MB array. If Jupyter is reacting slowly,
hashing a big variable could be the reason. You can fix this by telling Jupyter to stop saving it.
But, you won’t loose it.

[52]: @time BIG = randn(1000,1000,100)
@show Base.summarysize(BIG)
@time TM.tm_hash(BIG)

0.623984 seconds (2 allocations: 762.940 MiB, 8.07% gc time)
Base.summarysize(BIG) = 800000048

0.488059 seconds (67.17 k allocations: 3.211 MiB)

[52]: 0xc1ba4cc9ec75c856

[53]: TM.dontsave(Y)

[54]: # But, we changed the binding of BIG. So it has been saved.
TM.vars(IJulia.n - 1)

[54]: Dict{Any,Any} with 10 entries:
:a => [0.0 0.580431 … 0.0275737 -0.607591; 1.60128 0.293623 … 0.177615 -0.…
:vec => [1, 2, 3, 4]
:h1 => 0x4330888b40615b85
:y => 3
:h0 => 0xc0fb5ae483d856da
:cell => 22
:S => S
:z => Any[]
:BIG => [-0.924035 1.59391 … -0.304681 -0.992116; -0.208401 -0.829228 … -1.2…
:x => S(0)

IJulia.n stores the number of a cell. We will keep using this to index cells to facilitate editing of
the notebook.

[55]: IJulia.n

[55]: 55

It even works with plots.

[56]: cell = IJulia.n
using Plots

10

default(fmt = :png)
p = plot(rand(5), rand(5))

[56]:

[57]: p = scatter(rand(10), rand(10))

[57]:

11

[58]: TM.vars(cell)[:p]

[58]:

12

4 Running big jobs in threads
The other feature of Time Machine is that it lets you run intensive jobs in threads, so that you can
get other work done while they are running. If you have a multicore machine, you can also view
this as a way to manage running a bunch of experiments from Jupyter. The key is to wrap the
jobs in TM.@thread begin, followed by end. Jobs that are running inside a @thread block sandbox
their variables. To access the values of the variables from the thread after it finishes, look at vars,
ans, or use @past.

When the jobs finish, their result is stored in Out, and you can access their state from past.
Unfortunately, if the jobs contain any print statements, they can show up in other cells.

To see which jobs are running, look at TM.running. TM.finished contains a list of those that have
finished.

In the examples below, we will simulate the delay of a long-running job with sleep. As you will
see, results will change after jobs finish.

[59]: x = collect(1:3)
y = 1

[59]: 1

[60]: t0 = time()
n = IJulia.n
TM.@thread begin

y = y + 1
push!(x,y)
sleep(5)
sum(x)

end

[60]: Task (runnable) @0x00000001192add50

[61]: println("After $(time() - t0) seconds.")
Out[n]

After 0.9098551273345947 seconds.

[61]: Task (runnable) @0x00000001192add50

[62]: sleep(10)

[63]: println("After $(time() - t0) seconds.")
Out[n]

13

After 12.024251937866211 seconds.

[63]: 8

[64]: x, y

[64]: ([1, 2, 3], 1)

[65]: TM.@past n
x, y

[65]: ([1, 2, 3, 2], 2)

There is a subtle reason that I put the sleep(10) statement on a separate line. The output of
finished jobs is only inserted into Out at the start of the execution of the first cell that is run after
the job finishes. So, it is possible to go one cell without the output being correct. If you want to
test it, put the sleep(10) inside the next cell, and then run the cells in quick succession.

You can not put two @thread statements into one cell.

[66]: n = IJulia.n
TM.@thread begin

x = x + 1
y[1] = 3
sum(y)

end
TM.@thread begin

x = x + 1
y[1] = 4
sum(y)

end

@thread can be called at most once per cell.

But, you can have many running at once. That’s the point!

[67]: function intense(n)
sleep(n)
println("I slept for $(n) seconds!")
n^2

end

[67]: intense (generic function with 1 method)

[68]: t0 = time()
n1 = IJulia.n
TM.@thread intense(10)

[68]: Task (runnable) @0x00000001192ad690

14

[69]: println("After $(time()-t0) seconds")
n2 = IJulia.n
TM.@thread intense(11)

After 0.508124828338623 seconds

[69]: Task (runnable) @0x000000011845f190

[70]: println("After $(time()-t0) seconds")
n3 = IJulia.n
TM.@thread intense(2)

After 1.018509864807129 seconds

[70]: Task (runnable) @0x00000001192ae890

[71]: println("After $(time()-t0) seconds")
TM.running

After 1.5418009757995605 seconds

[71]: Set{Any} with 3 elements:
68
69
70

[72]: sleep(3)

I slept for 2 seconds!

[73]: println("After $(time()-t0) seconds")
TM.running

After 6.071583032608032 seconds

[73]: Set{Any} with 2 elements:
68
69

[74]: println("After $(time()-t0) seconds")
TM.finished

After 6.620029926300049 seconds

[74]: 2-element Array{Int64,1}:
60
70

15

[75]: sleep(10)
println("After $(time()-t0) seconds")
TM.running

I slept for 10 seconds!
I slept for 11 seconds!
After 17.50132989883423 seconds

[75]: Set{Any}()

[76]: Out[n1], Out[n2], Out[n3]

[76]: (100, 121, 4)

You can also get notifications of when jobs finish. These can be sent to Jupyter, in which case they
will just print. You can also send them to the terminal in which Jupyter is running, or both.

[77]: TM.notify_jupyter!(true)
TM.notify_terminal!(true)
@TM.thread begin

println("this will run for 3 seconds")
sleep(3)

end

this will run for 3 seconds

[77]: Task (runnable) @0x000000011845c010

[78]: n = IJulia.n
using LinearAlgebra
@TM.thread begin

min_svd = Inf
min_matrix = []
for i in 1:100

M = rand([-1;1], 1000, 1000)
v = minimum(svdvals(M))
if v < min_svd

min_svd = v
min_matrix = M

end
end
min_svd

end

Cell 78

[78]: Task (runnable) @0x00000001188be890

16

finished.
Cell 77 finished.

[79]: # do some other stuff, clobbering v and M
v = 0
M = randn(100,100)
;

[80]: # that min svd value computed above
TM.ans(n)

[80]: 0.00012619151374331338

[81]: # and, the matrix that realized it
M = TM.vars(n)[:min_matrix]
minimum(svdvals(M))

[81]: 0.00012619151374331338

[]:

17

	What IJulia Provides
	Setting up IJuliaTimeMachine
	Recalling past states
	Running big jobs in threads

